Electrically tunable band gap in silicene
نویسنده
چکیده
We report calculations of the electronic structure of silicene and the stability of its weakly buckled honeycomb lattice in an external electric field oriented perpendicular to the monolayer of Si atoms. The electric field produces a tunable band gap in the Dirac-type electronic spectrum, the gap being suppressed by a factor of about eight by the high polarizability of the system. At low electric fields, the interplay between this tunable band gap, which is specific to electrons on a honeycomb lattice, and the Kane-Mele spin-orbit coupling induces a transition from a topological to a band insulator, whereas at much higher electric fields silicene becomes a semimetal.
منابع مشابه
Quantum Anomalous Hall Effect and Tunable Topological States in 3d Transition Metals Doped Silicene
Silicene is an intriguing 2D topological material which is closely analogous to graphene but with stronger spin orbit coupling effect and natural compatibility with current silicon-based electronics industry. Here we demonstrate that silicene decorated with certain 3d transition metals (Vanadium) can sustain a stable quantum anomalous Hall effect using both analytical model and first-principles...
متن کاملTunable and sizable band gap in silicene by surface adsorption
Opening a sizable band gap without degrading its high carrier mobility is as vital for silicene as for graphene to its application as a high-performance field effect transistor (FET). Our density functional theory calculations predict that a band gap is opened in silicene by single-side adsorption of alkali atom as a result of sublattice or bond symmetry breaking. The band gap size is controlla...
متن کاملTuning the band gap in silicene by oxidation.
Silicene monolayers grown on Ag(111) surfaces demonstrate a band gap that is tunable by oxygen adatoms from semimetallic to semiconducting type. With the use of low-temperature scanning tunneling microscopy, we find that the adsorption configurations and amounts of oxygen adatoms on the silicene surface are critical for band gap engineering, which is dominated by different buckled structures in...
متن کاملGated silicene as a tunable source of nearly 100% spin-polarized electrons.
Silicene is a one-atom-thick two-dimensional crystal of silicon with a hexagonal lattice structure that is related to that of graphene but with atomic bonds that are buckled rather than flat. This buckling confers advantages on silicene over graphene, because it should, in principle, generate both a band gap and polarized spin-states that can be controlled with a perpendicular electric field. H...
متن کاملTunable band gap and doping type in silicene by surface adsorption: towards tunneling transistors.
By using first-principles calculations, we predict that a sizable band gap can be opened at the Dirac point of silicene without degrading silicene's electronic properties with n-type doping by Cu, Ag, and Au adsorption, p-type doping by Ir adsorption, and neutral doping by Pt adsorption. A silicene p-i-n tunneling field effect transistor (TFET) model is designed by the adsorption of different t...
متن کامل